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Tissue engineering

i) General concepts



The classical strategy in tissue engineering involved
3 different components

Scaffold Cells Growth factors



Different processes are followed depending on the
targeted clinical applications and cells source
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Each component is important: scaffold
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Each component is important: cell source
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Obviously, regulatory aspects are essential




Example of a successful implementation

How 3D Printing Could End The Deadly Shortage Of
Donor Organs

The Huffington Post | By Macrina Cooper-White

Posted: 03/01/2015 9:51 am EST Updated: 03/02/2015 2:59 pm EST

The Huffington post



Example of a successful implementation




Example of a successful implementation
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Example of a successful implementation

ARTHROSCOPIC BIOPSY
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Cartilage cells sent to laboratory,
millions of chondrocytes grown

QOPERATION

G2

Collagen graft sutured
over cartilage Iz2sion
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under craft into
cartilage lesion

From http://noy eskneeinstitute.com/articular-cartilage-repair/



http://noyeskneeinstitute.com/articular-cartilage-repair/

Anyway, tissue engineering is not (yet) the
announced revolution in medicine, why!?

- regulatory affairs
- cost

- business model
- logistic

- Inadequate mechanical properties of
the scaffold (at least for
musculoskeletal applications)



Tissue engineering

ii) Biomechanical considerations (evaluation, bioreactor)
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Evaluation of the mechanical loading situation to
develop appropriate materials

‘ Scaffold ‘ Cells Growth factors

| Load-bearing +| Biomechanics




The clinical application needs then to be
clearly defined




... and corresponding loading
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Not only the geometry and density are
needed, but also the osteotomy procedure

Geometry + bone density Geometry transformed in Tibial osteotomy
obtained by (T scan FEM simulated




Mechanical information are then obtained

i

for the scaffold

Evaluate the mechanical effect
of the plate positioning

Optimisation of scaffold
mechanical properties

Numerical tests of different
scaffold shapes

)

)

)

Scaffold: flexible (E = 300 MPa)
but resistant (o > 50 MPa)

' ‘




Corresponding mechanical properties of the
(porous) scaffold
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The matching of mechanical properties for the
native and artificial tissues is necessary for a
functional tissue engineering approach
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Biomechanical consideration in bioreactors
development: perfusion

@

From: PNAS, vol. 107 no. 8 3299-3304
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Biomechanical considerations in bioreactor
development: perfusion

\'\\ AV ® . °
B \ O O N ~
— U :> ¢ ./1/'E ° ? ’ Kon koff h
/// .\ /
, \ Lt
Fluid-induced shear stress Laminar flow
2
Y
T = dU(y) u(y) — umax(l 2 -9
= U d h Umax = <Uay
Y 2)
u: fluid velocity; pu: fluid viscosity Umax: maximum fluid velocity; uav: average fluid velocity

Shear stress on the cells

_ SHUgy
h

T

23



The perfusion can then be tuned to favour tissue
formation in scaffold placed inside bioreactor
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24 From: TISSUE engiNeerING: Part A Volume 15, Number 5, 2009



The perfusion system seems then the best at least
for tissue engineering of bone and cartilage tissues
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Obviously for tendon or ligament tissue engineering,
bioreactor with traction mode are more adequate

Latex tube

Seaffold

Rotation of the chamber,
connected to the lower jaw
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Tissue engineering

iii) In vivo loading bioreactor
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The classical strategy in bone tissue
engineering could be modified

Scaffold Cells Growth factors

Biomechanics
(mechano-transduction)
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Could we use the mechanical stimulation
as an osteoinductor signal?

¥

Mathieu et al. 2005
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A controlled in vivo mechanical loading
system is developed

In vivo model

Design of the study

- / rats
- loading started 2 weeks
after surgery

(

Loaded
10N 4 Hz 5 min

5 loadings total (1 loading every 2 days) ~ Control

30 From Buropean Cells and Materials Vol. 19 2010 (pages 41-49)




A controlled in vivo mechanical loading
system is developed
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A longitudinal in vivo uCT scanning is performed
to evaluate bone formation in the scaffold

- Each leg is stretched and scanned separately

- CaHA fantoms and water tubes are used for
calibration

- 7 scans performed between 2 to 35 weeks
following implantation

- Bone volume fraction (BVF) is measured




Short periods of initial loading increase the long
term bone formation in the scaffold
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Bone formation and resorption in the scaffold is a

dynamic process
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Mechanical stimulation not only increased bone
formation rate, ...

but also decreased bone resorption rate
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The loading allowed to“functionalize” the
“biological” competencies of the scaffold
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How can we translate the in vivo results into a
clinical application!?
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Bone formation is faster in regions closer to the
bone-scaffold interface

From Blomaterials, 22, F006-7012, 2011

Hypothesis: bone formation in scaffold is governed by a

diffusion phenomenon
38



Bone formation in scaffold is described with a
diffusion equation
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An analytical solution to the bone diffusion can be
found
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Spatial and temporal experimental values of bone
formation
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Can the diffusion equation predict bone
formation in tissue engineering scaffolds?

In vivo Time points | Experimental | Predicted BVF
experiment BVF (%) (%)
Rat distal femur / weeks 19 + 2 24
(this study)
22 weeks 417 47
——— Segmental 3 weeks 1.4 +0.2 1.9
T — defect in rat?
y¥ i 12 weeks 42 +1.0 5.7
D“““ Cortical 14 days 45 + 13 36
7 —— perfor.atlon 4 28 days 58 + 8 52
(b) mice?

1 Rai et al., J Biomed Mater Res A, 2007
2 Monfoulet et al, Calc Tissue Int, 2010
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Based on the diffusion model, a translation of the
rat in vivo results is proposed

Mechanical
Stimulus

Biodegradable Scaffold

*

Biodegradable Scaffold
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The bone formation in and mechanical property of
the scaffold are predicted (3 years post-implantation)

BVF (%)
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Tissue engineering

i) General concepts
ii) Biomechanical considerations

iii) In vivo bioreactor
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